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A Method of Moments Analysis and a
Finite-Difference Time-Domain
Analysis of a Probe—Sleeve Fed
Rectangular Waveguide Cavity

John M. Jarem, Member, IEEE

Abstract —A multifilament method of moments (MOM) analysis and
a finite-difference time-domain (FD-TD) analysis have been used to
numerically calculate the input impedance of a probe-sleeve fed rectan-
gular wavegunide which has been short-circuited on one side. The input
impedance of the system has been determined by using the above
methods for several probe-sleeve configurations and reasonable agree-
ment between the two methods for the cases studied has been found. A
MOM Green’s function formulation which is based on scattering super-
position has also been derived which allows the input impedance of a
probe—sleeve feed to be calculated when the waveguide is terminated in
a given load. The MOM results and FD-TD numerical results are
compared for this loaded waveguide input impedance case and reason-
able agreement between the methods has been found. A comparison of
theory and experiment is given when the waveguide is terminated in a
ground plane aperture.

I. INTRODUCTION

N important problem in the microwave area is deter-

mining the input impedance of a probe feed when it is
placed in a rectangular waveguide which is short-circuited on
one side and terminated with a waveguide load on the other
side. This probe input impedance problem has important
applications for the design of cavity-backed slot antennas for
aircraft or missiles when the terminating waveguide load is
an aperture which radiates into free space or some other
dielectric medium (for example, a missile plasma sheath
layer) and has important applications for the design of mi-
crowave circuits.

A limitation of exciting a semi-infinite waveguide only by a
single probe is the fact that only the probe height 4 and the
short circuit distance d (See Fig. 1) can be used to tune the
probe for maximum power transfer. A way of overcoming
this problem is to add a metallic sleeve to the waveguide,
either above the probe or to the side of the probe. The
addition of the sleeve can cause a large change in the input
impedance of the system, depending on the probe’s and the
sleeve’s size and position and on the load which is used as a
waveguide termination. For the above-described reason, then,
the determination of the input impedance of the
probe—sleeve feed system is an important problem to solve
as the addition of the metallic sleeve gives the microwave
designer additional parameters (sleeve length and position)
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Fig. 1. The geometry of the probe-sleeve waveguide system is shown

when a semi-infinite waveguide terminates the waveguide system.
(a) Side view. (b) Top view.

with which to tune and match the input impedance of the
overall rectangular waveguide system.

The problem of determining the input impedance of a
probe inside a waveguide has been analyzed by many au-
thors, including Collin [1], who derived a variational expres-
sion for the input impedance of a probe inside a waveguide,
Williamson [2]-[7] and Rollins et al. [8], who used a combi-
nation Fourier transform and MOM approach to determine
the input impedance of a probe inside of a waveguide, and
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Jarem [9] and Helaly and Jarem [10], who used a multifila-
ment MOM approach to analyze the probe impedance wave-
guide problem. Very recently McLeod [11] has used the
finite-difference time-domain (FD-TD) method to analyze
the electromagnetic fields in a waveguide.

The purpose of the present paper will be to analyze the
above-described metallic probe-sleeve waveguide feed sys-
tem and determine to what extent a sleeve affects the input
impedance of a loaded rectangular waveguide system. The
analysis will be carried out by using a multifilament MOM
approach as was done in [9] and will also be performed by
using a FD-TD approach. The two approaches are used in
order to validate to some extent the results of each method.
A comparison of data collected by the MOM approach, the
FD-TD approach, and experiment will also be given.

. MeTHOD OF MOMENTS, MULTIFILAMENT
ANALYSIS

This section will be concerned with presenting a method
of moments, multifilament analysis of the electric fields and
currents in a probe-sieeve fed rectangular waveguide. The
analysis is based on (1) using Green’s function to calculate
the electric fields which radiate from all currents and sources
in the waveguide, (2) imposing boundary conditions on the
electric field at the appropriate perfect conductor surfaces in
the waveguide (metallic probe and sleeve surfaces), and
(3) using the method of moments to solve the resulting
electric field integral equations which result. The input
impedance is calculated from the method of moments solu-
tion by dividing the net probe current at the base of the
probe into the coaxial voltage potential difference at the
base of the probe.

The Green’s functions which describe electric fields which
radiate in the waveguide and which are used to define the
electric field integral equation consist of (1) the Green’s
function which describes the radiation from magnetic surface
current at the base of the coaxial cable to the probe sleeve
surface, (2) the Green’s function which describes the radia-
tion that arises from electric surface current on the
probe-sleeve surface back onto itself, and (3) the Green’s
function which describes radiation from electric surface cur-
rent on the probe sleeve surface when a waveguide load
reflects energy back into the waveguide probe feed system.

Mathematically the boundary conditions and electric fields
which define the equations for the probe and sleeve currents
in a loaded waveguide at the probe or sleeve surface are
given by the equations '
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E;"’ is the impressed electric field which arises from the base
of the coaxial probe (see [9]) and radiates onto the
probe-sleeve surface. In the above expressions J(x',y’,z)
represents the surface current which is on the probe or
sleeve, r is the radius of the probe or sleeve, and the
dimensions a, b, ¢, and d are shown in Fig. 2. In (3) the G;‘;,
Green’s function has been derived by assuming that only a
TE,, mode can propagate in the waveguide and that the
waveguide load is far enough away from the probe-sleeve
system that higher order modes do not contribute to the
input impedance. This in practice is a very good assumption
unless the load is very close to the feed system. The G;;
term has been derived by using scattering superposition; that
is, it has been derived by adding the infinite number of
forward and backward TE,; mode reflections off the short
circuit plate and waveguide load that a current element
would radiate inside the waveguide. By locating the current
clement at a point x',y’,z’ in Fig. 2 and observing the
electric field at x,y, z, the Green’s function given by (3) is
derived. As can be seen from this equation, when I' =0 (no
waveguide load), G, is zero, as it should be.

The Gny term is based on adding an infinite number of
TE,,, and TM,,, rectangular waveguide modes [1] together
to form a slowly converging infinite series over the integers
m and n. This series represents the Green’s function of a
y-directed electric dipole located at (x', y', z') which radiates
an E, electric field to the point (x,y,z). The Green’s
function given in (2), because it is a slowly converging series,
has been converted to a rapidly converging one through the
use of a Poisson summation [1], [9]. Discussions of both the
slowly converging and the rapidly converging series are given
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Fig. 2. The geometry of the probe-sleeve waveguide system is shown
when a TE |, load terminates the waveguide system at a distance of ¢~d
from the probe.

in [9]. The rapidly converging series has been used for all
calculations in this paper.

Once the electric field integral equations for the currents
on the probe surface and the sleeve surface have been
defined, an important problem that remains is to convert this
equation into a matrix equation which can then be solved
numerically. Several options exist for performing the matrix
conversion, depending on the expansion functions which are
used to represent the unknown probe and sleeve surface
currents and on the testing functions which are used to
enforce boundary conditions on the probe and sleeve sur-
faces. Some examples of the two-dimensional expansion
functions that can be used to represent the surface currents
of the probe and sleeve are pulse functions in the ¢’ and y’
directions, point-sampled functions in the ¢’ direction (also
called multifilament functions) and wavenumber-dependent
entire domain modal functions in the y’ direction, and
point-sampled functions in the ¢’ direction and piecewise
sinusoidal functions in the y’ direction.

In using the above combinations of testing and expansion
functions it is important to correctly represent the radius of
the probe or sleeve in the system of equations; it is also
important to keep the matrix size of the system as small as
possible. The use of delta functions (or, equivalently, multi-
filaments) as expansion and testing functions in the ¢ and ¢’
directions and of wave-dependent modal functions as expan-
sion and testing functions in the y and y’ directions solves
the problem adequately including the probe radius and sleeve
radius dimensions in the system of equations but unfortu-
nately also leads to a matrix equation which is relatively large
for the type of problem being solved (number of filaments X
number of entire domain model functions). It also leads to a
matrix equation which is very ill conditioned. The ill condi-
tioning is due to the fact that when matrix elements are delta
function sampled around the probe and the sleeve in the ¢
and ¢’ directions, the matrix elements which belong to the
same group of sampled ¢ and ¢’ points tend to be very close
together in value and thus form a system of linear equations
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where many of the equations are very nearly linearly depen-
dent on one another and thereby form an overall set of
equations which are ill conditioned.

The present author has found that a simple way to avoid
this problem and also provide a matrix equation which is
relatively small (4 X 4) is simply to average the multifilament
matrix equation elements over the ¢ and ¢’ sampled points
and then to solve for the total amount of net current which
flows on the probe or sleeve surface (this is 277 times the
average surface current around the probe or sleeve). The
sampling at ¢ and ¢’ points around the probe and sleeve is,
of course, numerically equivalent to integrating the electric
field integral equations around the probe or sleeve surfaces.

The reduced matrix equation that results from the proce-
dure described above is given by

Py Spr Ny Ny
Y Yilgmh L
p'=1sp=1 f ,=11,=1
Pr
[ (DG, (V) dydy'= = ¥ Elt,(y)dy,
PL,,”PL,, p=1
Sp=1-,8, s p=1,""+,Pr. 4)

In the above expressmns the integrals over PL,, and PL,,
represents a y or y' integration over the length of the probe
or sleeve for which a test or expansion function is being
integrated over. In the above expressions i, and i}, repre-
sent the points around the probe and sleeve where the ¢ and
¢’ coordinates have been sampled. The ¢ and ¢’ coordinates
have been displaced from one another by A /2, where
Ap=27/ Ny, in order to maximize the separation between
source and observation points, which in turn guarantees
maximum convergence of the series solutions. The integers
S J and § », TEDIESENt the number of modal functions which
are used as expansion or testing functions on the probe or
sleeve surface.

The tp( y) and ty, (y") functions have been chosen as

wave-dependent entire domain functions. The choice of
modal functions in the y direction is an important one and
can be used to impose the condition whether the probe or
sleeve currents vanish or do not vanish at the probe or sleeve
tips. In this paper, in order to impose a Galerkin procedure,
the testing functions for the same probe length have always
been chosen the same as the expansion functions. The ex-
pansion and testing functions which have been used in this
paper for the probe are all linear combinations of sin k(4 —
(y+b/2), 1—cosk(h—(y +b/2), sinky, cosky, and
sin[(w /(hy — hy)) (y — k). The last function is the only
non-wave-dependent entire domain included in the analysis.
It has been included because it causes the current at an
isolated sleeve to vanish at the sleeve tips. Linear combina-
tions of the above functions can be used to cause the electric
current to vanish or not vanish at the probe’s end or the
sleeve’s end. The wave-dependent modal functions were first
suggested by Collin [1] and seem to produce very reliable
impedance results when used.

III. FiniTE-DIFFERENCE TIME-DOMAIN ANALYSIS

An alternative method of numerically calculating the elec-
tric currents, fields, and input impedance of a probe-sleeve
fed waveguide is provided by the FD-TD algorithm. This
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algorithm calculates the electromagnetic fields and currents
in the waveguide by using the finite differences to numeri-
cally solve Maxwell’s equations in the probe-sleeve wave-
guide environment. In this method all spatial and temporal
derivatives are approximated by finite differences in a three-
dimensional grid. These finite differences are substituted
into Maxwell’s equations and then manipulated in such a
way that past and present values of the electric and magnetic
fields can be marched forward in time to predict new values
of the electric and magnetic fields. This method has been
used to solve a wide variety of electromagnetic problems,
including scattering from lossy dielectric bodies, scattering
from aircraft, microwave absorption of energy in the body,
and the analysis of patch antennas. Reference [12] gives a
review of the method. McLeod {11] has recently determined
the input impedance of a waveguide by using this method.

In this paper the input impedance of the waveguide
probe—sleeve feed system has been calculated by the FD-TD
method through a recently developed computer program
called TSARS (Temporal Scattering and Reflectance Soft-
ware) [13], [14]. In the present application the input
impedance was calculated by placing a sinusoidal gap voltage
source at the base of the probe feed, calculating numerically
the sinusoidal current that flowed at the base of the probe
feed, converting the time-domain sinusoidal solutions to pha-
sor form, and then taking the ratio of the two phasor
quantities to find the input impedance of the system. The
current flowing at the base of the probe was found by
calculating

1=¢ﬁ-df

around the wire. All computer runs were made for a long
enough time to ensure steady-state conditions. The probe
and metallic sleeve were both modeled numerically using the
thin-wire approximation derived by Taflove et al. in [15].

Nonzero waveguide load conditions which could produce a
reflection coefficient

I'=|Tle/

were simulated numerically by placing at the end of the
waveguide (the reference plane of Fig. 2), at a distance §
from the reference plane, a lossy dielectric of relative dielec-
tric value éz=¢'— je” of length L. (See Fig. 2.) A short
calculation shows that the TE , reflection coefficient I' from
this load is given by -

R+1

e /2B %)
where

o
= —B7 tanky'kyL
Y

bl el e

X 2

DY

By adjusting €', €”, L, and S at a single frequency o,
virtually any reflection coefficient I' can be simulated. Nu-
merical runs using the FD-TD algorithm verified the above

A = free-space wavelength.
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TE |, reflection coefficient formulas to within a few percent
(2 to 3%).

Although (5) can be used to calculate the case where
I' =0, an alternative method was used to simulate conditions
of a matched waveguide load (that is, a waveguide section
which is semi-infinite to the right) being present. This alter-
native method consisted in building a very long FD-TD
waveguide grid and exciting this grid at ¢ = 0 for enough time
periods for the probe-sleeve system to be in steady state
locally near the probe-sleeve short circuit wall (approxi-
mately five time periods). However, the number of time
periods must be kept low enough so that the TE,, mode of
the waveguide does not have time to return to the
probe-sleeve system to interfere electromagnetically with
that system. In this way a very accurate simulation of a
semi-infinite waveguide load condition can be produced.
With this method, a more accurate I' =0 load condition
could be imposed than by the use of the load described by
). ‘

1V. NumEericaL ResuLTs

The validity of the MOM and FD-TD methods for deter-
mining antenna input impedance was tested by calculating
the input impedance (normalized to 50 Q) of a loaded
semi-infinite waveguide antenna and then comparing the
numerical results with experimental data. The validity of the
method was also tested numerically by directly comparing
MOM and FD-TD results when a few different probe—sleeve
geometries were used to excite the semi-infinite waveguide
system.

Fig. 3 shows the input impedance (normalized to 50 Q) of
a centered, probe-excited cavity aperture antenna (see Fig. 3
inset) as determined by experiment (square), MOM (trian-
gle), and FD-TD (diamond) when the cavity dimensions are
a=2.246 in., b=1.133 in., ¢ =1.984 in., d =0.758 in., and
h = 0.5665 in. and when the frequency is varied from 3 GHz
(which is above the TE, cutoff frequency of 2.63 GHz) to
5 GHz (which is below the next highest modal cutoff fre-
quency of 5.21 GHz). The input impedance of the antenna
including the modification of the impedance due to the
presence of a waveguide ground plane aperture termination
(see Fig. 3 inset) was determined by calculating the wave-
guide reflection coefficient I' associated with the aperture
(from the theory of [16]), using these values of T' in (3) (when
calculating Z,y from the MOM) or (5) (when calculating
Zy from the FD-TD method) and then following the theory
previously described in Sections II and III to complete the
analysis. The waveguide reflection coefficients which were
used were I' = 0,182 —86° (at 3 GHz), I = 021/ —84° (at 4
GHz), and T = 0.172 —90° (at 5 GHz). In Fig. 3, the upper
three curves represent the real part of the input impedance
(normalized to 50 )) and the lower three curves represent
the imaginary part of the input impedance (normalized to 50
Q). As can be seen, good agreement exists between theory
(MOM and FD-TD) and experiment, with the MOM ap-
proach clearly giving consistently more accurate results than
the FD-TD method. It is interesting that the experimental
data seem to be bracketed by the MOM and FD-TD results.

Fig. 4 shows the input impedance of a center-fed probe
with no sleeve present when the probe height varies from
0.3b to 1.0b at a frequency of 4.0 GHz. The waveguide
dimensions are given in the inset. As can be seen, good
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antenna are shown as determined by experiment, by the MOM approach, and by the FD-TD approach.
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agreement exist between the two methods except for the
calculation of the reactance X (the imaginary part of nor-
malized input impedance) when A =0.9b. The author be-
lieves that the discrepancy occurs at this point because only a
single grid cell models the gap between the probe tip and the
top of the waveguide wall using the FD-TD method. It is
interesting to note that the MOM impedance results seem to
almost average the FD-TD results.

Fig. 5 shows the input impedance of the probe-sleeve
system when a centered probe of height # = 0.5b is placed in
the waveguide and when a sleeve which is attached to the
top waveguide wall is placed directly above the probe. The
bottom of the sleeve varies from a position of 0.55b up to
0.95b. As can be seen, fair agreement exists between the two
methods in Fig. 5. It is interesting and important to note that
both methods in Fig. 5 show the same general trends in
impedance change as the sleeve length changes.

Fig. 6 shows the case where a centered probe h = 0.5b is
placed in the waveguide and an off-axis sleeve which is
attached to the waveguide boitom wall is placed 0.15a to the
side of the probe and 0.2a forward of the sleeve. As can bc
seen, although close agreement does not exist between the
MOM and FD-TD methods, both methods are showing very
similar trends in the change of impedance with sleeve height.

A difference (or error) analysis of the data presented in
Figs. 3-6 has been prepared in order to quantitatively gauge
the performance of the MOM and FD-TD methods relative
to experiment and to each other. The difference analysis is
performed by first calculating the coaxial cable reflection
coefficients which are associated with the two sets of input
impedance data which are to be compared, subtracting the
reflection coefficients, and then squaring and averaging the
magnitude of the complex reflection coefficient difference in
an appropriate manner. The numerical difference between
the reflection coefficients associated with any two sets of
impedance data (either numerical or experimental) was com-
puted by the following formula:

1 N 1/2
€=l erl_rﬂiz) 2 (6)
(Ni=l '
where
Zin —1
r=—-—-, ji=1,---,N;j=1,2
1 ZIN,J+1 i J

where Zy = the normalized input impedance for which an
error analysis is to be performed and N is the number of
points over which the average error is to be computed.
Equation (6) has been normalized by dividing the rms differ-
ence by its maximum possible value, which is 2. Based on (6),
we will now give the reflection coefficient rms differences of
Figs. 3-6. The average RMS difference between the MOM
impedance data of Fig. 3 and the experimental data was
3.93%, and the average rms difference between the FD-TD
data of Fig. 3 and the experimental data was 9.20%. As can
be seen from these values, the MOM analysis was more
accurate than the FD-TD data for this case. The average
rms difference errors as computed by (6) for the FD-TD and
MOM impedance data for Figs. 4-6 were 10.3%, 9.74%, and
25.0% respectively.

Based on the results of comparing the experimental data,
the MOM data, and the FD-TD numerical data, the author
feels that the MOM data represent a more accurate method
of calculating input impedance than the FD-TD method.
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The author feels, however, that the best overall numerical
results are obtained when the two methods are used together
to validate each other.

V. SUMMARY

A multifilament method of moments (MOM) analysis and
a finite-difference time-domain (FD-TD) analysis have been
used to numerically calculate the input impedance of a
probe-sleeve fed rectangular waveguide. The input
impedance of the probe for several probe—sleeve configura-
tions using the above methods has been calculatéed and
reasonable agreement between the two methods for the
cases studied has been found. Comparison of theory and
experiment shows that the MOM and FD-TD numerical
methods both agree acceptably well with experimental data.
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